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ABSTRACT
    The representation of hydrogen-bonding contribution generally involves the number
of hydrogen-bonding pair that requires implicit computation when more than one type
of bonds is present. To reduce the computational burden associated with the solution of
a set of nonlinear implicit equations, a free energy expansion method is proposed for
Veytsman statistics in the present study. Based on the normalized Veytsman statistics of
the present authors, the Helmholtz free energy for association was expanded around a
reference value. The lattice-compatible expanded Veytsman term was then combined
with the explicit non-random lattice-fluid model of present authors to obtain equations
for pressure and chemical potential. Calculated vapor-liquid equilibria using the
expansion were found to closely agree with rigorous calculation results and with
experimental values for alkane-alkanol mixtures.

KEY WORDS : alkane-alkanol, association, equation of state, hydrogen-bonding,
lattice fluid model, vapor-liquid equilibria



1. INTRODUCTION
   Phase equilibria and thermophysical properties involving molecules with specific
interactions are of importance in many industrial systems. However, the equation of
state approach to such systems has long been limited to vapor phase [1]. Recent
interests in equations of state approach have been focused on studies applicable to both
vapor and liquid phase. Among the most successful methods are the statistical
associating fluid theory (SAFT) [2] and hydrogen-bonding non-random lattice fluid
theory (NLF-HB) [3]. In Helmholtz free energy expressions, both theories have
association terms that are implicit for mixtures with more than one type of hydrogen
bonds.
   The non-association part of NLF-HB was derived from the Guggenheim combinatory
[4] and made explicit by expanding Helmholtz free energy around the reference
athermal solution [5,6]. The hydrogen-bonding contribution was derived from Veytsman
statistics [7] that are compatible with lattice statistics. Recently Lee et al. [8] pointed out
that Veytsman contribution still has non-zero contribution even if the hydrogen-bonding
free energy tends to zero and proposed a normalization scheme. Furthermore they
proposed a method for the explicit evaluation of hydrogen-bonding pairs in the
Veytsman terms. This evaluation method could be very helpful in removing the
numerical difficulties associated with the solution of implicit equations for Veytsman
terms. Yet, a more consistent method would be based on an expansion method of
Helmholtz free energy. In this study, we develop the free energy expansion scheme for
the problem with one type of hydrogen bonds and explore the consequences for
mixtures with aliphatic alcohols.

2. Derivation
   We consider a c component mixture in the lattice of fixed cell volume VH and the
coordination number z. Component i in a c-component mixture has ri segments. The
surface area parameter qi of component i is related by the relation 2(ri-1)=z(ri-qi). The
interaction energy between segments of components i and j is εij. A segment may be a
hydrogen donor or acceptor. The number of hydrogen donor groups of type k in species
i is dk

i and the number of acceptor groups of type l in species j is al
j. The total number of

donor types is m and that of acceptor types is n. The hydrogen-bonding free energy is
HB
ijA .

   The lattice configurational partition function is assumed as the product of physical and
hydrogen-bonding contributions.
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The physical contribution was derived from Guggenheim combinatory and made
explicit by expansion around the reference athermal solution and by retaining terms up
to the second order [5,6].
   The implicit formulation of the chemical contribution from Veytsman statistics [7]
was proposed by Lee et al. [3]. The total number of donor groups of type k (Nd

k ) and
that of acceptor groups of types l (Na

l ) are given by
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We also define the total number of donor-acceptor pair (NHB), unpaired donors (Ni0
HB)

and unpaired acceptors (N0j
HB) as functions of the number of i-j hydrogen bond pair

(Nij
HB).
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According to the normalized Veytsman statistics proposed later by Lee et al. [8], the
hydrogen-bonding contribution is written as,
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The maximization condition leads to
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The hydrogen-bonding contribution to Helmholtz free energy is
c
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c
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where quantities with superscript or subscript HB0 come from the solution of Eq 5 with

0=HB
ijA .

   For the explicit formulation of the chemical or hydrogen-bonding contribution, we
expand Helmholtz free energy around a reference free energy.
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The subscript HB indicates the hydrogen-bonding contribution for the system and the
superscript HB the contibution for donor-acceptor pairs. Subscript and superscript HBR
means the value at the reference state. The reference Helmholtz free energy is obtained
from Eq 6 by replacing quantities with superscript or subscript HB by HBR that are
obtained from the solution of Eq 5 by setting HB

ijA  to a constant reference value HBRA

independent of donor or acceptor type. As shown in the appendix Nij
HB0 or Nij

HBR is
readily obtained explicitly.
   The pressure of system and the chemical potential of component i also can be parted
into the additive physical and chemical contributions,

HBP PPP +=                                                           (9)
HB
i

P
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where the subscript and superscript P denotes the physical contribution. The physical
contribution of Helmholtz free energy is presented from the NLF model of You et al.
[5,6]. For the simplest system with one donor type and one acceptor type the pressure
for chemical part can be derived by the standard method.
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   The chemical part in Eq (10) is derived by well-known relation and expressed as
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   Eqs.(11) and (15) appear complicated, but are advantages over rigorous NLF-HB EOS
in computation. The derivatives in Eq (8) are evaluated at the reference state and the
number of hydrogen bond balance equations at reference state, Eq (6), are readily
solved explicitly regardless of the number of donor type and acceptor type.

3. Results and Discussions
   We set the coordination number z at 10 and the unit lattice volume HV  at
9.75cm3/mol. The hydrogen bonding Helmholtz free energies are defined by following
equation.
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   The reference values are set to HBRU = –20.3 kJ/mol and HBRS = –21.55 J/mol⋅K.
HB
ijU = -25.1 kJ/mol from Renon and Prausnitz [9] and HB

ijS = -26.5 J/mol⋅K from

Panayiotou [10] for 1-alkanols. Two molecular parameter, ri and εii, are fitted to
saturated liquid density and vapor pressure data for subcritical region and pressure-
volume isotherm data for supercritical region. The temperature dependency is correlated
by the following form [11],
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where the reference temperature, T0, is 298.15 K. Temperature coefficients in Eqs.(18)
and (19) for 1-alkanols and alkanes are listed in Table 1. For mixtures, an interaction
parameter between different two molecules is defined by
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and is fitted to binary VLE data.
   Fig. 1 shows comparisons by four different calculations. One is the result of NLF
calculations in which hydrogen-bonding consideration is not included. The result is seen
inferior to the other calculations with hydrogen-bonding corrections. The second one is
the result of rigorous evaluation of hydrogen-bonding effects as proposed by Yeom et
al. [3] and by Lee et al. [8]. These two methods give essentially identical results. In the
third method, the number of hydrogen bonds is explicitly evaluated. The last one is by
the present expansion of Helmholtz free energy. The present method is seen to give
essentially the same results as the rigorous methods. It is also a more consistent method
in that both physical and chemical terms are expanded in Helmholtz free energy and
terms up to the second order are retained. When compared with data, pentanol-pentane
system in Fig. 1 gives good results.
   Results of isothermal P-y calculations by the present free energy expansion method
for alcohol-alkane mixture are summarized in Table 2. N-Hexane and methanol system
shows somewhat large deviations. Ethanol and n-hexane mixture shows a large pressure
deviation, but the system pressure is very low. Other than these systems, the results are
seen generally acceptable.

4. Conclusion
   In the non-random lattice fluid hydrogen-bonding model, Veytsmann statistics defines
a set of nonlinear equations to solve for the number of hydrogen bonds when more than
one type of donor-acceptor pairs are present. To circumvent the difficulties associated
with the solution, a free energy expansion method was proposed for explicit solutions in
this study.. When applied to vapor-liquid equilibria, the expansion method was found to
give good approximation to the rigorous solution and to describe the phase equilibrium
behavior accurately in most cases for alkane-alkanol mixtures.
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List of symbols
A Helmholtz free energy
a, d number of acceptor groups and donor groups in a molecule,

respectively
Na, Nd number of acceptor groups and donor groups in system,

respectively
Nr number of site in lattice
N0 number of hole in lattice
r segment number
VH unit lattice volume
z coordination number
Greeks letters
ε interaction energy parameter
λ binary interaction parameter
µ chemical potential
νHB defined by eq.(13)



Ω partition function
Superscripts
C configurational property
HB chemical contribution by HB
HB0 zero HB Helmholtz free energy state value
HBR reference HB Helmholtz free energy state value
i,j,k,l index for component, donor group or acceptor group
Subscripts
HB chemical contribution by HB
HB0 zero HB Helmholtz free energy state value
HBR reference HB Helmholtz free energy state value
i,j,k,l index for component, donor group or acceptor group
ij, kl interaction pair
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Appendix
   NHBR is obtained by solving quadratic equation after summing Eq (6) in i and j .
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By summing both sides of Eq (6) once in i and once in j we get expressions for
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Eqs. (A2) and (A3) are simultaneously rearranged in terms of NHBR and readily
substituted into Eq (6) then we obtain the following equation.
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These expressions give Nij
HB0 by setting AHBR

 =0 and NHBR = NHB0.



 Table 1. Temperature coefficients of molecular parameters
Chemicals ea eb ec ra rb rc Range(K)

Propane 84.774 0.0161 -0.1399 6.827 -0.0005 0.0077 115-345

n-Pentane 94.484 0.0369 0.0189 9.924 -0.0021 0.0012 303-443

n-Hexane 97.278 0.0313 -0.0245 11.460 -0.0015 0.0061 273-473

n-Heptane 99.068 0.0352 -0.0187 13.035 -0.0019 0.0060 273-513

n-Decane 101.689 0.0529 0.0125 17.805 -0.0034 0.0057 368-598

Methanol 113.282 0.0156 -0.1085 3.754 0.0009 0.0006 215-465

Ethanol 106.213 0.0146 -0.0544 5.357 0.0002 0.0034 239-489

1-butanol 107.495 0.0006 -0.0914 8.469 0.0014 0.0054 275-505

1-pentanol 107.165 0.0337 -0.0256 10.020 -0.0001 0.0048 295-565

1-octanol 108.068 0.0325 -0.0346 15.061 0.0012 0.0099 313-573



Table 2. Comparison of results with experimental data

System T(K) λ12 AADPa AADYb References

Methanol
+ propane

310.70 0.060 2.11 0.0259 [12]

Ethanol
+ n-hexane

293.15 0.033 6.18 0.0116 [13]

1- butanol
+ n-pentane

303.15 0.019 0.10 0.0017 [14]

1- butanol
+ n-hexane

298.15 0.024 0.10 0.0295 [15]

1- butanol
+ n-heptane

348.15 0.033 2.89 0.0398 [16]

1- pentanol
+ n-pentane

303.15 0.017 0.10 0.0144 [14]

1- pentanol
+ n-hexane

323.15 0.017 0.07 0.0057 [17]

n-Hexane
+ methanol

333.15 0.071 5.27 0.0676 [18]

1- octanol
+ n-heptane

313.15 0.008 1.27 0.0570 [19]

n-Decane
+ 1-butanol

358.15 0.022 0.09 0.0127 [20]

∑ −= N

i ii
cal

i
a PPPNAADP expexp /||)/100(      ∑ −= N

i ii
cal

i
b YYYNAADY expexp /||)/1(



Figure captions

Figure 1. Comparison of experimental data with calculated NLF and NLF-HB EOSs for
1-pentanol + n-pentane system at 303.15 K
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 Figure 1. Comparison of experimental data with calculated NLF and NLF-HB EOSs
for 1-pentanol + n-pentane system at 303.15 K


